7
Part of 2003 AIME Problems
Problems(2)
Possible perimeters
Source:
5/11/2006
Point is on with and . Point is not on so that , and and are integers. Let be the sum of all possible perimeters of . Find .
geometryperimeterinequalitiestrigonometryperpendicular bisectorPythagorean Theorem
Area of a Rhombus
Source:
12/26/2006
Find the area of rhombus given that the radii of the circles circumscribed around triangles and are and , respectively.
geometryrhombustrigonometrytrig identitiesLaw of Sines