A point P is chosen in the interior of △ABC so that when lines are drawn through P parallel to the sides of △ABC, the resulting smaller triangles, t1, t2, and t3 in the figure, have areas 4, 9, and 49, respectively. Find the area of △ABC.
[asy]
size(200);
pathpen=black+linewidth(0.65);pointpen=black;
pair A=(0,0),B=(12,0),C=(4,5);
D(A--B--C--cycle); D(A+(B-A)*3/4--A+(C-A)*3/4); D(B+(C-B)*5/6--B+(A-B)*5/6);D(C+(B-C)*5/12--C+(A-C)*5/12);
MP("A",C,N);MP("B",A,SW);MP("C",B,SE); /* sorry mixed up points according to resources diagram. */
MP("t_3",(A+B+(B-A)*3/4+(A-B)*5/6)/2+(-1,0.8),N);
MP("t_2",(B+C+(B-C)*5/12+(C-B)*5/6)/2+(-0.3,0.1),WSW);
MP("t_1",(A+C+(C-A)*3/4+(A-C)*5/12)/2+(0,0.15),ESE);[/asy] geometryratioAMCAIMEAsymptoteMATHCOUNTSez game