MathDB
Problems
Contests
National and Regional Contests
Turkey Contests
National Olympiad First Round
2008 National Olympiad First Round
26
26
Part of
2008 National Olympiad First Round
Problems
(1)
Turkey NMO 2008 1st Round - P26 (Number Theory)
Source:
8/26/2012
Let
A
=
2
2
+
3
⋅
2
+
1
3
!
⋅
4
!
+
3
2
+
3
⋅
3
+
1
4
!
⋅
5
!
+
4
2
+
3
⋅
4
+
1
5
!
⋅
6
!
+
⋯
+
1
0
2
+
3
⋅
10
+
1
11
!
⋅
12
!
A=\frac{2^2+3\cdot 2 + 1}{3! \cdot 4!} + \frac{3^2+3\cdot 3 + 1}{4! \cdot 5!} + \frac{4^2+3\cdot 4 + 1}{5! \cdot 6!} + \dots + \frac{10^2+3\cdot 10 + 1}{11! \cdot 12!}
A
=
3
!
⋅
4
!
2
2
+
3
⋅
2
+
1
+
4
!
⋅
5
!
3
2
+
3
⋅
3
+
1
+
5
!
⋅
6
!
4
2
+
3
⋅
4
+
1
+
⋯
+
11
!
⋅
12
!
1
0
2
+
3
⋅
10
+
1
. What is the remainder when
11
!
⋅
12
!
⋅
A
11!\cdot 12! \cdot A
11
!
⋅
12
!
⋅
A
is divided by
11
11
11
?
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
0
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
1
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
5
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
8
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
10
<span class='latex-bold'>(A)</span>\ 0 \qquad<span class='latex-bold'>(B)</span>\ 1 \qquad<span class='latex-bold'>(C)</span>\ 5 \qquad<span class='latex-bold'>(D)</span>\ 8 \qquad<span class='latex-bold'>(E)</span>\ 10
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
0
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
1
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
5
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
8
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
10
factorial