MathDB
Problems
Contests
National and Regional Contests
Turkey Contests
National Olympiad First Round
2007 National Olympiad First Round
5
5
Part of
2007 National Olympiad First Round
Problems
(1)
Turkey NMO 2007 1st Round - P05 (Geometry)
Source:
10/4/2012
Let
C
C
C
and
D
D
D
be points on the semicircle with center
O
O
O
and diameter
A
B
AB
A
B
such that
A
B
C
D
ABCD
A
BC
D
is a convex quadrilateral. Let
Q
Q
Q
be the intersection of the diagonals
[
A
C
]
[AC]
[
A
C
]
and
[
B
D
]
[BD]
[
B
D
]
, and
P
P
P
be the intersection of the lines tangent to the semicircle at
C
C
C
and
D
D
D
. If
m
(
A
Q
B
^
)
=
2
m
(
C
O
D
^
)
m(\widehat{AQB})=2m(\widehat{COD})
m
(
A
QB
)
=
2
m
(
CO
D
)
and
∣
A
B
∣
=
2
|AB|=2
∣
A
B
∣
=
2
, then what is
∣
P
O
∣
|PO|
∣
PO
∣
?
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
3
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
1
+
3
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
1
+
3
2
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
2
3
3
<span class='latex-bold'>(A)</span>\ \sqrt 2 \qquad<span class='latex-bold'>(B)</span>\ \sqrt 3 \qquad<span class='latex-bold'>(C)</span>\ \frac{1+\sqrt 3} 2 \qquad<span class='latex-bold'>(D)</span>\ \frac{1+\sqrt 3}{2\sqrt 2} \qquad<span class='latex-bold'>(E)</span>\ \frac{2\sqrt 3} 3
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
2
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
3
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
2
1
+
3
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
2
2
1
+
3
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
3
2
3
geometry