MathDB
Problems
Contests
National and Regional Contests
Turkey Contests
National Olympiad First Round
2000 National Olympiad First Round
34
34
Part of
2000 National Olympiad First Round
Problems
(1)
Turkish NMO First Round - 2000 P-34 (Number Theory)
Source:
7/8/2012
Which statement is not true for at least one prime
p
p
p
?
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
If
x
2
+
x
+
3
≡
0
(
m
o
d
p
)
has a solution, then
x
2
+
x
+
25
≡
0
(
m
o
d
p
)
has a solution.
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
If
x
2
+
x
+
3
≡
0
(
m
o
d
p
)
does not have a solution, then
x
2
+
x
+
25
≡
0
(
m
o
d
p
)
has no solution
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
If
x
2
+
x
+
25
≡
0
(
m
o
d
p
)
has a solution, then
x
2
+
x
+
3
≡
0
(
m
o
d
p
)
has a solution
.
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
If
x
2
+
x
+
25
≡
0
(
m
o
d
p
)
does not have a solution, then
x
2
+
x
+
3
≡
0
(
m
o
d
p
)
has no solution.
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
None
<span class='latex-bold'>(A)</span>\ \text{If } x^2+x+3 \equiv 0 \pmod p \text{ has a solution, then } \\ \qquad x^2+x+25 \equiv 0 \pmod p \text{ has a solution.} \\ \\ <span class='latex-bold'>(B)</span>\ \text{If } x^2+x+3 \equiv 0 \pmod p \text{ does not have a solution, then} \\ \qquad x^2+x+25 \equiv 0 \pmod p \text{ has no solution} \\ \\ \qquad<span class='latex-bold'>(C)</span>\ \text{If } x^2+x+25 \equiv 0 \pmod p \text{ has a solution, then} \\ \qquad x^2+x+3 \equiv 0 \pmod p \text{ has a solution}. \\ \\ \qquad<span class='latex-bold'>(D)</span>\ \text{If } x^2+x+25 \equiv 0 \pmod p \text{ does not have a solution, then} \\ \qquad x^2+x+3 \equiv 0 \pmod p \text{ has no solution. } \\ \\ \qquad<span class='latex-bold'>(E)</span>\ \text{None}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
If
x
2
+
x
+
3
≡
0
(
mod
p
)
has a solution, then
x
2
+
x
+
25
≡
0
(
mod
p
)
has a solution.
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
If
x
2
+
x
+
3
≡
0
(
mod
p
)
does not have a solution, then
x
2
+
x
+
25
≡
0
(
mod
p
)
has no solution
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
If
x
2
+
x
+
25
≡
0
(
mod
p
)
has a solution, then
x
2
+
x
+
3
≡
0
(
mod
p
)
has a solution
.
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
If
x
2
+
x
+
25
≡
0
(
mod
p
)
does not have a solution, then
x
2
+
x
+
3
≡
0
(
mod
p
)
has no solution.
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
None
search