MathDB
Problems
Contests
National and Regional Contests
Turkey Contests
National Olympiad First Round
2000 National Olympiad First Round
32
32
Part of
2000 National Olympiad First Round
Problems
(1)
Turkish NMO First Round - 2000 P-32 (Algebra)
Source:
7/8/2012
Find the sum of all possible values of
f
(
2
)
f(2)
f
(
2
)
such that
f
(
x
)
f
(
y
)
−
f
(
x
y
)
=
y
x
+
x
y
f(x)f(y)-f(xy) = \frac{y}{x}+\frac{x}{y}
f
(
x
)
f
(
y
)
−
f
(
x
y
)
=
x
y
+
y
x
, for every positive real numbers
x
,
y
x,y
x
,
y
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
5
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
−
5
4
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
5
4
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
3
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
None
<span class='latex-bold'>(A)</span>\ \frac{5}{2} \qquad<span class='latex-bold'>(B)</span>\ -\frac{5}{4} \qquad<span class='latex-bold'>(C)</span>\ \frac{5}{4} \qquad<span class='latex-bold'>(D)</span>\ \frac{3}{2} \qquad<span class='latex-bold'>(E)</span>\ \text{None}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
2
5
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
−
4
5
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
4
5
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
2
3
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
None