MathDB
Problems
Contests
National and Regional Contests
Turkey Contests
National Olympiad First Round
2000 National Olympiad First Round
20
20
Part of
2000 National Olympiad First Round
Problems
(1)
Turkey NMO 2000 1st Round - P20 (Algebra)
Source:
7/25/2012
For every real
x
x
x
, the polynomial
p
(
x
)
p(x)
p
(
x
)
whose roots are all real satisfies
p
(
x
2
−
1
)
=
p
(
x
)
p
(
−
x
)
p(x^2-1)=p(x)p(-x)
p
(
x
2
−
1
)
=
p
(
x
)
p
(
−
x
)
. What can the degree of
p
(
x
)
p(x)
p
(
x
)
be at most?
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
0
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
2
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
4
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
There is no upper bound for the degree of
p
(
x
)
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
None
<span class='latex-bold'>(A)</span>\ 0 \qquad<span class='latex-bold'>(B)</span>\ 2 \qquad<span class='latex-bold'>(C)</span>\ 4 \qquad<span class='latex-bold'>(D)</span>\ \text{There is no upper bound for the degree of } p(x) \qquad<span class='latex-bold'>(E)</span>\ \text{None}
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
0
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
2
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
4
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
There is no upper bound for the degree of
p
(
x
)
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
None
algebra
polynomial