The length of the altitude of equilateral triangle ABC is 3. A circle with radius 2, which is tangent to [BC] at its midpoint, meets other two sides. If the circle meets AB and AC at D and E, at the outer of △ABC , find the ratio Area(ADE)Area(ABC).(A)\ 2\left(5 \plus{} \sqrt {3} \right) \qquad(B)\ 7\sqrt {2} \qquad(C)\ 5\sqrt {3} \\ \qquad(D)\ 2\left(3 \plus{} \sqrt {5} \right) \qquad(E)\ 2\left(\sqrt {3} \plus{} \sqrt {5} \right) geometryratiotrapezoidpower of a point