MathDB
Problems
Contests
National and Regional Contests
Sweden Contests
Swedish Mathematical Competition
1972 Swedish Mathematical Competition
4
4
Part of
1972 Swedish Mathematical Competition
Problems
(1)
log inequalities
Source: 1972 Swedish Mathematical Competition p4
3/26/2021
Put
x
=
log
10
2
x = \log_{10} 2
x
=
lo
g
10
2
,
y
=
log
10
3
y = \log_{10} 3
y
=
lo
g
10
3
. Then
15
<
16
15 < 16
15
<
16
implies
1
−
x
+
y
<
4
x
1 - x + y < 4x
1
−
x
+
y
<
4
x
, so
1
+
y
<
5
x
1 + y < 5x
1
+
y
<
5
x
. Derive similar inequalities from
80
<
81
80 < 81
80
<
81
and
243
<
250
243 < 250
243
<
250
. Hence show that
0.47
<
log
10
3
<
0.482.
0.47 < \log_{10} 3 < 0.482.
0.47
<
lo
g
10
3
<
0.482.
algebra
Compare
inequalities
logarithm