MathDB
Problems
Contests
National and Regional Contests
Spain Contests
Spain Mathematical Olympiad
2020 Spain Mathematical Olympiad
2
2
Part of
2020 Spain Mathematical Olympiad
Problems
(1)
f(1)=1, f(n)=f(n/2) for n even, f(n) = f(n-1) + (-1)^f(n-1) for n odd.
Source: Spain Mathematical Olympiad 2020 P2
7/14/2020
Consider the succession of integers
{
f
(
n
)
}
n
=
1
∞
\{f(n)\}_{n=1}^{\infty}
{
f
(
n
)
}
n
=
1
∞
defined as:
∙
\bullet
∙
f
(
1
)
=
1
f(1) = 1
f
(
1
)
=
1
.
∙
\bullet
∙
f
(
n
)
=
f
(
n
/
2
)
f(n) = f(n/2)
f
(
n
)
=
f
(
n
/2
)
if
n
n
n
is even.
∙
\bullet
∙
If
n
>
1
n > 1
n
>
1
odd and
f
(
n
−
1
)
f(n-1)
f
(
n
−
1
)
odd, then
f
(
n
)
=
f
(
n
−
1
)
−
1
f(n) = f(n-1)-1
f
(
n
)
=
f
(
n
−
1
)
−
1
.
∙
\bullet
∙
If
n
>
1
n > 1
n
>
1
odd and
f
(
n
−
1
)
f(n-1)
f
(
n
−
1
)
even, then
f
(
n
)
=
f
(
n
−
1
)
+
1
f(n) = f(n-1)+1
f
(
n
)
=
f
(
n
−
1
)
+
1
.a) Compute
f
(
2
2020
−
1
)
f(2^{2020}-1)
f
(
2
2020
−
1
)
.b) Prove that
{
f
(
n
)
}
n
=
1
∞
\{f(n)\}_{n=1}^{\infty}
{
f
(
n
)
}
n
=
1
∞
is not periodical, that is, there do not exist positive integers
t
t
t
and
n
0
n_0
n
0
such that
f
(
n
+
t
)
=
f
(
n
)
f(n+t) = f(n)
f
(
n
+
t
)
=
f
(
n
)
for all
n
≥
n
0
n \geq n_0
n
≥
n
0
.
recurrence relation
Spain