MathDB
Problems
Contests
National and Regional Contests
Spain Contests
Spain Mathematical Olympiad
1975 Spain Mathematical Olympiad
7
7
Part of
1975 Spain Mathematical Olympiad
Problems
(1)
f(x) =1/(|x + 3| + |x + 1| + |x - 2| + |x -5|)
Source: Spanish Mathematical Olympiad 1975 P7
12/23/2022
Consider the real function defined by
f
(
x
)
=
1
∣
x
+
3
∣
+
∣
x
+
1
∣
+
∣
x
−
2
∣
+
∣
x
−
5
∣
f(x) =\frac{1}{|x + 3| + |x + 1| + |x - 2| + |x -5|}
f
(
x
)
=
∣
x
+
3∣
+
∣
x
+
1∣
+
∣
x
−
2∣
+
∣
x
−
5∣
1
for all
x
∈
R
x \in R
x
∈
R
. a) Determine its maximum. b) Graphic representation.
algebra
analytic geometry
inequalities