MathDB
Problems
Contests
National and Regional Contests
Spain Contests
Spain Mathematical Olympiad
1971 Spain Mathematical Olympiad
4
4
Part of
1971 Spain Mathematical Olympiad
Problems
(1)
(a A+bB+cC)/(a+b+c) >= \pi /3
Source: Spanish Mathematical Olympiad 1971 P4
12/5/2022
Prove that in every triangle with sides
a
,
b
,
c
a, b, c
a
,
b
,
c
and opposite angles
A
,
B
,
C
A, B, C
A
,
B
,
C
, is fulfilled (measuring the angles in radians)
a
A
+
b
B
+
c
C
a
+
b
+
c
≥
π
3
\frac{a A+bB+cC}{a+b+c} \ge \frac{\pi}{3}
a
+
b
+
c
a
A
+
b
B
+
c
C
≥
3
π
Hint: Use
a
≥
b
≥
c
⇒
A
≥
B
≥
C
a \ge b \ge c \Rightarrow A \ge B \ge C
a
≥
b
≥
c
⇒
A
≥
B
≥
C
.
geometry
inequalities
geometric inequality
algebra
trigonometry