MathDB
Problems
Contests
National and Regional Contests
Singapore Contests
Singapore Senior Math Olympiad
2004 Singapore MO Open
1
1
Part of
2004 Singapore MO Open
Problems
(1)
k<= m(m-1)/n(n-1) for n-elements subsets of {1,...,m}
Source: Singapore Open Math Olympiad 2004 2nd Round p1 SMO
4/3/2020
Let
m
,
n
m,n
m
,
n
be integers so that
m
≥
n
>
1
m \ge n > 1
m
≥
n
>
1
. Let
F
1
,
.
.
.
,
F
k
F_1,...,F_k
F
1
,
...
,
F
k
be a collection of
n
n
n
-element subsets of
{
1
,
.
.
.
,
m
}
\{1,...,m\}
{
1
,
...
,
m
}
so that
F
i
∩
F
j
F_i\cap F_j
F
i
∩
F
j
contains at most
1
1
1
element,
1
≤
i
<
j
≤
k
1 \le i < j \le k
1
≤
i
<
j
≤
k
. Show that
k
≤
m
(
m
−
1
)
n
(
n
−
1
)
k\le \frac{m(m-1)}{n(n-1)}
k
≤
n
(
n
−
1
)
m
(
m
−
1
)
combinatorics
Subsets
inequalities