4
Part of 2015 Saudi Arabia GMO TST
Problems(3)
p^2 divides $ k(k + 1)(k + 2) ... (k + p - 3) - 1
Source: 2015 Saudi Arabia GMO TST I p4
7/26/2020
Let be an odd prime number. Prove that there exists a unique integer such that and divides .Malik Talbi
number theorydividesdivisible
s(n) \ge n , binomial remainder
Source: 2015 Saudi Arabia GMO TST II p4
7/26/2020
For each positive integer , define , where is the remainder when is divided by . Find all positive integers such that .Malik Talbi
Binomialremaindernumber theorycombinatoricsinequalities
if p^3q^3 divides n^{pq} + 1 then either p^2 divides n + 1 or q^2 divides n + 1
Source: 2015 Saudi Arabia GMO TST III p4
7/26/2020
Let be two different odd prime numbers and an integer such that divides . Prove that if divides then either divides or divides .Malik Talbi
number theorydividesdivisible