4
Problems(2)
EF tangent to circumcircle of ABC, circumcircle of BIC related, incenter I
Source: 2007 Oral Moscow Geometry Olympiad grades 8-9 p4
10/18/2020
Let be the center of a circle inscribed in triangle . The circle circumscribed about the triangle intersects lines and at points and , respectively. Prove that the line touches the circle inscribed in the triangle .
geometrycircumcircleincentertangent
equal segments connecting opposite sides of hexagon wanted, equilateral
Source: 2007 Oral Moscow Geometry Olympiad grades 10-11 p4
10/19/2020
The midpoints of the opposite sides of the hexagon are connected by segments. It turned out that the points of pairwise intersection of these segments form an equilateral triangle. Prove that the drawn segments are equal.(M. Volchkevich)
geometryhexagonequal segmentsEquilateral