MathDB
Problems
Contests
National and Regional Contests
Russia Contests
Junior Tuymaada Olympiad
2003 Junior Tuymaada Olympiad
5
5
Part of
2003 Junior Tuymaada Olympiad
Problems
(1)
x^2 \sqrt {1+2y^2} + y^2 \sqrt {1+2x^2} \geq xy (x+y+\sqrt{2})
Source: Tuymaada Junior 2003 p5
5/11/2019
Prove that for any real
x
x
x
and
y
y
y
the inequality
x
2
1
+
2
y
2
+
y
2
1
+
2
x
2
≥
x
y
(
x
+
y
+
2
)
x^2 \sqrt {1+2y^2} + y^2 \sqrt {1+2x^2} \geq xy (x+y+\sqrt{2})
x
2
1
+
2
y
2
+
y
2
1
+
2
x
2
≥
x
y
(
x
+
y
+
2
)
.
algebra
radical inequality
Inequality