MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad Regional Round
2006 All-Russian Olympiad Regional Round
10.5
10.5
Part of
2006 All-Russian Olympiad Regional Round
Problems
(1)
| sin nx| >= \sqrt3 / 2 - All-Russian MO 2006 Regional (R4) 10.5
Source:
9/27/2024
Prove that for every
x
x
x
such that
sin
x
≠
0
\sin x \ne 0
sin
x
=
0
, there is such natural
n
n
n
, which
∣
sin
n
x
∣
≥
3
2
.
| \sin nx| \ge \frac{\sqrt3}{2}.
∣
sin
n
x
∣
≥
2
3
.
algebra
inequalities
trigonometry