Let n≥3 be an integer and let x1,x2,…,xn−1 be nonnegative integers such that
\begin{eqnarray*} \ x_1 + x_2 + \cdots + x_{n-1} &=& n \\ x_1 + 2x_2 + \cdots + (n-1)x_{n-1} &=& 2n-2. \end{eqnarray*}
Find the minimal value of F(x1,x2,…,xn)=∑k=1n−1k(2n−k)xk. inequalities proposedinequalities