MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania Team Selection Test
1994 BMO TST – Romania
3:
3:
Part of
1994 BMO TST – Romania
Problems
(1)
intressting comb problem
Source: Romania TST for BMO 1994,P3
9/6/2017
Let
M
1
,
M
2
,
.
.
.
,
M
11
M_1, M_2, . . ., M_{11}
M
1
,
M
2
,
...
,
M
11
be
5
−
5-
5
−
element sets such that M_i \cap M_j \neq {\O} for all
i
,
j
∈
{
1
,
.
.
.
,
11
}
i, j \in \{1, . . ., 11\}
i
,
j
∈
{
1
,
...
,
11
}
. Determine the minimum possible value of the greatest number of the given sets that have nonempty intersection.
combinatorics
algebra