MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania Team Selection Test
1978 Romania Team Selection Test
9
9
Part of
1978 Romania Team Selection Test
Problems
(1)
sequences for IMO preparation
Source: Romanian TST, Day 1, P9
9/28/2018
A sequence
(
x
n
)
n
≥
0
\left( x_n\right)_{n\ge 0}
(
x
n
)
n
≥
0
of real numbers satisfies
x
0
>
1
=
x
n
+
1
(
x
n
−
⌊
x
n
⌋
)
,
x_0>1=x_{n+1}\left( x_n-\left\lfloor x_n\right\rfloor\right) ,
x
0
>
1
=
x
n
+
1
(
x
n
−
⌊
x
n
⌋
)
,
for each
n
≥
1.
n\ge 1.
n
≥
1.
Prove that if
(
x
n
)
n
≥
0
\left( x_n\right)_{n\ge 0}
(
x
n
)
n
≥
0
is periodic, then
x
0
x_0
x
0
is a root of a quadratic equation. Study the converse.
quadratics
algebra
Sequences
Periodic sequence