MathDB

Problems(4)

Hermite-like identity

Source:

12/14/2019
Let be a natural number n2. n\ge 2. Find the real numbers a a that satisfy the equation nx=k=1nx+(k1)a, \lfloor nx \rfloor =\sum_{k=1}^{n} \lfloor x+(k-1)a \rfloor , for any real numbers x. x.
Marius Perianu
floor functionalgebraequations
Sequence defined with powers of the order $ 1/n $

Source:

12/14/2019
Let bet a sequence (an)n1\left( a_n \right)_{n\ge 1} with a1=1 a_1=1 and defined as an=1+nan1n. a_n=\sqrt[n]{1+na_{n-1}} . Show that (an)n1 \left( a_n \right)_{n\ge 1} is convergent and determine its limit.
Florian Dumitrel
real analysisSequenceslimits
trigonometric and ln equation

Source:

12/14/2019
Solve in the real numbers the equation: cos2(x2)π4+cos(x2)π3=log3(x24x+6) \cos^2 \frac{(x-2)\pi }{4} +\cos\frac{(x-2)\pi }{3} =\log_3 (x^2-4x+6)
Gheorghe Mihai
quadraticsmonotonyequationsalgebratrigonometrylogarithms
Nice primitivability result

Source:

12/14/2019
Consider a function f:RR f:\mathbb{R}\longrightarrow\mathbb{R} that admits bounded primitives. Prove that the function g:RR g:\mathbb{R}\longrightarrow\mathbb{R} defined as f(x)={x,emsp;x0f(1/x)lnx,emsp;x>0 f(x)=\left\{ \begin{matrix} x, &   x\le 0 \\ f(1/x)\cdot\ln x ,&   x>0 \end{matrix}\right. admits primitives.
Florian Dumitrel
functionprimitivesreal analysis