MathDB
Problems
Contests
National and Regional Contests
Romania Contests
IMAR Test
2007 IMAR Test
1
1
Part of
2007 IMAR Test
Problems
(1)
sup(S)
Source: IMAR Test 2007
1/27/2009
For real numbers
x
i
>
1
,
1
≤
i
≤
n
,
n
≥
2
,
x_{i}>1,1\leq i\leq n,n\geq 2,
x
i
>
1
,
1
≤
i
≤
n
,
n
≥
2
,
such that: \frac{x_{i}^2}{x_{i}\minus{}1}\geq S\equal{}\displaystyle\sum^n_{j\equal{}1}x_{j}, for all i\equal{}1,2\dots, n find, with proof,
sup
S
.
\sup S.
sup
S
.
algebra proposed
algebra