MathDB

Problems(8)

Find all possible integers

Source: Romanian District Olympiad 2014, Grade 5, P1

6/15/2014
Find with proof all positive 33 digit integers abc\overline{abc} satisfying bac=cab+10 b\cdot \overline{ac}=c \cdot \overline{ab} +10
number theory proposednumber theory
An equality and an inequality

Source: Romanian District Olympiad 2014, Grade 6, P1

6/15/2014
Prove that: [*](12)3+(23)3+(56)3=1\displaystyle\left( \frac{1}{2}\right) ^{3}+\left( \frac{2}{3}\right)^{3}+\left( \frac{5}{6}\right) ^{3}=1 [*]333+433+533<6333^{33}+4^{33}+5^{33}<6^{33}
inequalitiesalgebra proposedalgebra
Inequality for real numbers

Source: Romanian District Olympiad 2014, Grade 7, P1

6/15/2014
[*]Prove that for any real numbers aa and bb the following inequality holds: (a2+1)(b2+1)+502(2a+1)(3b+1) \left( a^{2}+1\right) \left( b^{2}+1\right) +50\geq2\left( 2a+1\right)\left( 3b+1\right) [*]Find all positive integers nn and pp such that: (n2+1)(p2+1)+45=2(2n+1)(3p+1) \left( n^{2}+1\right) \left( p^{2}+1\right) +45=2\left( 2n+1\right)\left( 3p+1\right)
inequalitiesinequalities proposed
Find the length

Source: Romanian District Olympiad 2014, Grade 8, P1

6/15/2014
In the right parallelopiped ABCDABCDABCDA^{\prime}B^{\prime}C^{\prime}D^{\prime}, with AB=123AB=12\sqrt{3} cm and AA=18AA^{\prime}=18 cm, we consider the points PAAP\in AA^{\prime} and NABN\in A^{\prime}B^{\prime} such that AN=3BNA^{\prime}N=3B^{\prime}N. Determine the length of the line segment APAP such that for any position of the point MBCM\in BC, the triangle MNPMNP is right angled at NN.
analytic geometrygeometry proposedgeometry
Irrational number

Source: Romanian District Olympiad 2014, Grade 9, P1

6/15/2014
Find the xRQx\in \mathbb{R}\setminus \mathbb{Q} such that x2+xZ and x3+2x2Z x^2+x\in \mathbb{Z}\text{ and }x^3+2x^2\in\mathbb{Z}
algebra solvedalgebra
A complex equation

Source: Romanian District Olympiad 2014, Grade 10, P1

6/15/2014
Solve for zCz\in \mathbb{C} the equation : zz+1=z+z1 |z-|z+1||=|z+|z-1||
conicsellipsecomplex numbersalgebra proposedalgebra
A pair of matrices

Source: Romanian District Olympiad 2014, Grade 11, P1

6/15/2014
[*]Give an example of matrices AA and BB from M2(R)\mathcal{M}_{2}(\mathbb{R}), such that A^{2}+B^{2}=\left( \begin{array} [c]{cc} 2 & 3\\ 3 & 2 \end{array} \right) . [*]Let AA and BB be matrices from M2(R)\mathcal{M}_{2}(\mathbb{R}), such that \displaystyle A^{2}+B^{2}=\left( \begin{array} [c]{cc} 2 & 3\\ 3 & 2 \end{array} \right) . Prove that ABBAAB\neq BA.
linear algebra
Proving Riemann-integrability

Source: Romanian District Olympiad 2014, Grade 12, P1

6/15/2014
For each positive integer nn we consider the function fn:[0,n]Rf_{n}:[0,n]\rightarrow{\mathbb{R}} defined by fn(x)=arctan(x)f_{n}(x)=\arctan{\left(\left\lfloor x\right\rfloor \right)} , where x\left\lfloor x\right\rfloor denotes the floor of the real number xx. Prove that fnf_{n} is a Riemann Integrable function and find limn1n0nfn(x)dx.\underset{n\rightarrow\infty}{\lim}\frac{1}{n}\int_{0}^{n}f_{n}(x)\mathrm{d}x.
functionfloor functionlimitintegrationreal analysisreal analysis unsolved