MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Polish MO Finals
2003 Polish MO Finals
4
4
Part of
2003 Polish MO Finals
Problems
(1)
x^2 + y^2 + z^2 is divisible by x + y + z - Poland 2003
Source:
11/1/2010
A prime number
p
p
p
and integers
x
,
y
,
z
x, y, z
x
,
y
,
z
with
0
<
x
<
y
<
z
<
p
0 < x < y < z < p
0
<
x
<
y
<
z
<
p
are given. Show that if the numbers
x
3
,
y
3
,
z
3
x^3, y^3, z^3
x
3
,
y
3
,
z
3
give the same remainder when divided by
p
p
p
, then
x
2
+
y
2
+
z
2
x^2 + y^2 + z^2
x
2
+
y
2
+
z
2
is divisible by
x
+
y
+
z
.
x + y + z.
x
+
y
+
z
.
modular arithmetic
number theory
number theory unsolved