MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Polish MO Finals
1983 Polish MO Finals
2
2
Part of
1983 Polish MO Finals
Problems
(1)
a irrational in (0,1), p/q < a <r/s, r/s -p/q< 1/N, rq- ps = 1
Source: 1983 Polish MO Finals p2
2/25/2020
Let be given an irrational number
a
a
a
in the interval
(
0
,
1
)
(0,1)
(
0
,
1
)
and a positive integer
N
N
N
. Prove that there exist positive integers
p
,
q
,
r
,
s
p,q,r,s
p
,
q
,
r
,
s
such that
p
q
<
a
<
r
s
,
r
s
−
p
q
<
1
N
\frac{p}{q} < a <\frac{r}{s}, \frac{r}{s} -\frac{p}{q}<\frac{1}{N}
q
p
<
a
<
s
r
,
s
r
−
q
p
<
N
1
, and
r
q
−
p
s
=
1
rq- ps = 1
r
q
−
p
s
=
1
.
inequalities
algebra
irrational