MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Polish MO Finals
1975 Polish MO Finals
5
5
Part of
1975 Polish MO Finals
Problems
(1)
R/2r >= 1/ sin a/2 (1- sin a/2)
Source: Polish MO Finals 1975 p5
8/23/2024
Show that it is possible to circumscribe a circle of radius
R
R
R
about, and inscribe a circle of radius
r
r
r
in some triangle with one angle equal to
a
a
a
, if and only if
2
R
r
≥
1
sin
a
2
(
1
−
sin
a
2
)
\frac{2R}{r} \ge \dfrac{1}{ \sin \frac{a}{2} \left(1- \sin \frac{a}{2} \right)}
r
2
R
≥
sin
2
a
(
1
−
sin
2
a
)
1
geometry
Geometric Inequalities
trigonometry