MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Polish MO Finals
1955 Polish MO Finals
4
4
Part of
1955 Polish MO Finals
Problems
(1)
sin^2 a + sin^2 b >=sin a sin b+ sin a+ sinb -1
Source: Polish MO Finals 1955 p4
8/29/2024
Prove that
sin
2
α
+
sin
2
β
≥
sin
α
sin
β
+
sin
α
+
sin
β
−
1.
\sin^2 \alpha + \sin^2 \beta \geq \sin \alpha \sin \beta + \sin \alpha + \sin \beta - 1.
sin
2
α
+
sin
2
β
≥
sin
α
sin
β
+
sin
α
+
sin
β
−
1.
trigonometry
inequalities
algebra