MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Polish MO Finals
1952 Polish MO Finals
4
4
Part of
1952 Polish MO Finals
Problems
(1)
cos 3A + cos 3B + cos 3C = 1
Source: Polish MO Finals 1952 p4
8/28/2024
Prove that if the angles
A
A
A
,
B
B
B
,
C
C
C
of a triangle satisfy the equation
cos
3
A
+
cos
3
B
+
cos
3
C
=
1
,
\cos 3A + \cos 3B + \cos 3C = 1,
cos
3
A
+
cos
3
B
+
cos
3
C
=
1
,
then one of these angles equals
12
0
∘
120^\circ
12
0
∘
.
geometry
trigonometry