MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Poland - Second Round
1991 Poland - Second Round
5
5
Part of
1991 Poland - Second Round
Problems
(1)
2-element subests of 1-n
Source: Polish MO Recond Round 1991 p5
9/9/2024
P
1
,
P
2
,
…
,
P
n
P_1, P_2, \ldots, P_n
P
1
,
P
2
,
…
,
P
n
are different two-element subsets of
{
1
,
2
,
…
,
n
}
\{1,2,\ldots,n\}
{
1
,
2
,
…
,
n
}
. The sets
P
i
P_i
P
i
,
P
j
P_j
P
j
for
i
≠
j
i\neq j
i
=
j
have a common element if and only if the set
{
i
,
j
}
\{i,j\}
{
i
,
j
}
is one of the sets
P
1
,
P
2
,
…
,
P
n
P_1, P_2, \ldots, P_n
P
1
,
P
2
,
…
,
P
n
. Prove that each of the numbers
1
,
2
,
…
,
n
1,2,\ldots,n
1
,
2
,
…
,
n
is a common element of exactly two sets from
P
1
,
P
2
,
…
,
P
n
P_1, P_2, \ldots, P_n
P
1
,
P
2
,
…
,
P
n
.
combinatorics
Subsets