MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Poland - Second Round
1989 Poland - Second Round
4
4
Part of
1989 Poland - Second Round
Problems
(1)
x_1a_1 + ...x_{11}a_{ 11} is divisible by 1989.
Source: Polish MO Recond Round 1989 p4
9/9/2024
The given integers are
a
1
,
a
2
,
…
,
a
11
a_1, a_2, \ldots , a_{11}
a
1
,
a
2
,
…
,
a
11
. Prove that there exists a non-zero sequence
x
1
,
x
2
,
…
,
x
11
x_1, x_2, \ldots, x_{11}
x
1
,
x
2
,
…
,
x
11
with terms from the set
{
−
1
,
0
,
1
}
\{-1,0,1\}
{
−
1
,
0
,
1
}
such that the number
x
1
a
1
+
…
x
11
a
11
x_1a_1 + \ldots x_{11}a_{ 11}
x
1
a
1
+
…
x
11
a
11
is divisible by 1989.
number theory
divides
divisible