MathDB
Problems
Contests
National and Regional Contests
Peru Contests
Peru Cono Sur TST
2021 Peru Cono Sur TST.
P5
P5
Part of
2021 Peru Cono Sur TST.
Problems
(1)
2n concentric circles
Source: 2021 Peru Cono Sur TST P5
7/11/2023
Let
n
≥
2
n\ge 2
n
≥
2
be an integer. They are given
n
+
1
n + 1
n
+
1
red points in the plane. Prove that there exist
2
n
2n
2
n
circles
C
1
,
C
2
,
…
,
C
n
,
D
1
,
D
2
,
…
,
D
n
C_1 , C_2 , \ldots , C_n , D_1 , D_2 , \ldots , D_n
C
1
,
C
2
,
…
,
C
n
,
D
1
,
D
2
,
…
,
D
n
such that:
∙
\bullet
∙
C
1
,
C
2
,
…
,
C
n
C_1 , C_2 ,\ldots , C_n
C
1
,
C
2
,
…
,
C
n
are concentric.
∙
\bullet
∙
D
1
,
D
2
,
…
,
D
n
D_1 , D_2 ,\ldots , D_n
D
1
,
D
2
,
…
,
D
n
are concentric.
∙
\bullet
∙
For
k
=
1
,
2
,
3
,
…
,
n
k = 1, 2, 3,\ldots , n
k
=
1
,
2
,
3
,
…
,
n
the circles
C
k
C_k
C
k
and
D
k
D_k
D
k
are disjoint.
∙
\bullet
∙
For
k
=
1
,
2
,
3
,
…
,
n
k = 1, 2, 3,\ldots , n
k
=
1
,
2
,
3
,
…
,
n
it is true that
C
k
C_k
C
k
contains exactly
k
k
k
red dots in its interior and
D
k
D_k
D
k
contains exactly
n
+
1
−
k
n + 1 - k
n
+
1
−
k
red dots in its interior.
combinatorics