MathDB
Problems
Contests
National and Regional Contests
PEN Problems
PEN P Problems
35
35
Part of
PEN P Problems
Problems
(1)
P 35
Source:
5/25/2007
Prove that every positive integer which is not a member of the infinite set below is equal to the sum of two or more distinct numbers of the set
{
3
,
−
2
,
2
2
3
,
−
2
3
,
⋯
,
2
2
k
3
,
−
2
2
k
+
1
,
⋯
}
=
{
3
,
−
2
,
12
,
−
8
,
48
,
−
32
,
192
,
⋯
}
.
\{ 3,-2, 2^{2}3,-2^{3}, \cdots, 2^{2k}3,-2^{2k+1}, \cdots \}=\{3,-2, 12,-8, 48,-32, 192, \cdots \}.
{
3
,
−
2
,
2
2
3
,
−
2
3
,
⋯
,
2
2
k
3
,
−
2
2
k
+
1
,
⋯
}
=
{
3
,
−
2
,
12
,
−
8
,
48
,
−
32
,
192
,
⋯
}
.
Additive Number Theory