MathDB
Problems
Contests
National and Regional Contests
Norway Contests
Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Final Round
2023 Abelkonkurransen Finale
4a
4a
Part of
2023 Abelkonkurransen Finale
Problems
(1)
Sharp inequality [cyclic sum (a^2+b^2-c^2)/(ab) > 2] in triangle
Source: 2023 Abelkonkurransen Finale, Problem 4a
3/12/2024
Assuming
a
,
b
,
c
a,b,c
a
,
b
,
c
are the side-lengths of a triangle, show that \begin{align*} \frac{a^2+b^2-c^2}{ab} + \frac{b^2+c^2-a^2}{bc} + \frac{c^2+a^2-b^2}{ca} > 2. \end{align*} Also show that the inequality does not necessarily hold if you replace
2
2
2
(on the right-hand side) by a bigger by a bigger number.
inequalities
geometry