MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Moldova National Olympiad
2007 Moldova National Olympiad
11.4
11.4
Part of
2007 Moldova National Olympiad
Problems
(1)
Moldova NMO, 2007, XI Grade, Problem 4
Source: maybe this is Calculus..
3/3/2007
The function
f
:
R
→
R
f: \mathbb{R}\rightarrow\mathbb{R}
f
:
R
→
R
satisfies
f
(
cot
x
)
=
sin
2
x
+
cos
2
x
f(\textrm{cot}x)=\sin2x+\cos2x
f
(
cot
x
)
=
sin
2
x
+
cos
2
x
, for any
x
∈
(
0
,
π
)
x\in(0,\pi)
x
∈
(
0
,
π
)
. Find the minimum and maximum value of
g
:
[
−
1
;
1
]
→
R
g: [-1;1]\rightarrow\mathbb{R}
g
:
[
−
1
;
1
]
→
R
,
g
(
x
)
=
f
(
x
)
⋅
f
(
1
−
x
)
g(x)=f(x)\cdot f(1-x)
g
(
x
)
=
f
(
x
)
⋅
f
(
1
−
x
)
.
function
algebra unsolved
algebra