MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Moldova National Olympiad
2006 Moldova National Olympiad
9.1
9.1
Part of
2006 Moldova National Olympiad
Problems
(1)
Moldova MO 2006, 9.1 (tricky ineq.)
Source: Moldova national olympiad 2006, grade 9, pr.1
9/21/2016
Let
a
,
b
,
c
a,b,c
a
,
b
,
c
be positive real numbers such that
a
+
b
+
c
=
2005
a+b+c=2005
a
+
b
+
c
=
2005
. Find the minimum value of the expression:
E
=
a
2006
+
b
2006
+
c
2006
+
(
a
b
)
2004
+
(
b
c
)
2004
+
(
c
a
)
2004
(
a
b
c
)
2004
E=a^{2006}+b^{2006}+c^{2006}+\frac{(ab)^{2004}+(bc)^{2004}+(ca)^{2004}}{(abc)^{2004}}
E
=
a
2006
+
b
2006
+
c
2006
+
(
ab
c
)
2004
(
ab
)
2004
+
(
b
c
)
2004
+
(
c
a
)
2004
ā
inequalities