MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Moldova National Olympiad
2006 Moldova National Olympiad
10.5
10.5
Part of
2006 Moldova National Olympiad
Problems
(1)
Moldova mo 2006, 10th grade
Source: Moldova MO 2006
3/21/2006
Let
x
1
x_{1}
x
1
,
x
2
x_{2}
x
2
,
…
\ldots
…
,
x
n
x_{n}
x
n
be
n
n
n
real numbers in
(
1
4
,
2
3
)
\left(\frac{1}{4},\frac{2}{3}\right)
(
4
1
,
3
2
)
. Find the minimal value of the expression:
log
3
2
x
1
(
1
2
−
1
36
x
2
2
)
+
log
3
2
x
2
(
1
2
−
1
36
x
3
2
)
+
⋯
+
log
3
2
x
n
(
1
2
−
1
36
x
1
2
)
.
\log_{\frac 32x_{1}}\left(\frac{1}{2}-\frac{1}{36x_{2}^{2}}\right)+\log_{\frac 32x_{2}}\left(\frac{1}{2}-\frac{1}{36x_{3}^{2}}\right)+\cdots+ \log_{\frac 32x_{n}}\left(\frac{1}{2}-\frac{1}{36x_{1}^{2}}\right).
lo
g
2
3
x
1
(
2
1
−
36
x
2
2
1
)
+
lo
g
2
3
x
2
(
2
1
−
36
x
3
2
1
)
+
⋯
+
lo
g
2
3
x
n
(
2
1
−
36
x
1
2
1
)
.
logarithms
inequalities
calculus
derivative
function
algebra unsolved
algebra