MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
JBMO TST - Moldova
2000 Junior Balkan Team Selection Tests - Moldova
5
5
Part of
2000 Junior Balkan Team Selection Tests - Moldova
Problems
(1)
sum (a^2-b^2)/c >= 3a - 4b + c if a >= b >= c > 0
Source: 2000 Moldova JBMO TST p5
2/20/2021
Let the real numbers
a
,
b
,
c
a, b, c
a
,
b
,
c
be such that
a
≥
b
≥
c
>
0
a \ge b \ge c > 0
a
≥
b
≥
c
>
0
. Show that
a
2
−
b
2
c
+
c
2
−
b
2
a
+
a
2
−
c
2
b
≥
3
a
−
4
b
+
c
.
\frac{a^2-b^2}{c}+ \frac{c^2-b^2}{a}+ \frac{a^2-c^2}{b}\ge 3a - 4b + c.
c
a
2
−
b
2
+
a
c
2
−
b
2
+
b
a
2
−
c
2
≥
3
a
−
4
b
+
c
.
When does equality hold?
algebra
inequalities