MathDB
Problems
Contests
National and Regional Contests
Korea Contests
South Korea USCM
2016 Korea USCM
4
4
Part of
2016 Korea USCM
Problems
(1)
easy gronwall type inequality
Source: 2016 South Korea USCM P4
8/16/2020
Suppose a continuous function
f
:
[
−
π
4
,
π
4
]
→
[
−
1
,
1
]
f:[-\frac{\pi}{4},\frac{\pi}{4}]\to[-1,1]
f
:
[
−
4
π
,
4
π
]
→
[
−
1
,
1
]
and differentiable on
(
−
π
4
,
π
4
)
(-\frac{\pi}{4},\frac{\pi}{4})
(
−
4
π
,
4
π
)
. Then, there exists a point
x
0
∈
(
−
π
4
,
π
4
)
x_0\in (-\frac{\pi}{4},\frac{\pi}{4})
x
0
∈
(
−
4
π
,
4
π
)
such that
∣
f
′
(
x
0
)
∣
≤
1
+
f
(
x
0
)
2
|f'(x_0)|\leq 1+f(x_0)^2
∣
f
′
(
x
0
)
∣
≤
1
+
f
(
x
0
)
2
inequalities
real analysis
mean value theorem
college contests
function