MathDB
Problems
Contests
National and Regional Contests
Korea Contests
Korea Summer Program Practice Test
2016 Korea Summer Program Practice Test
4
4
Part of
2016 Korea Summer Program Practice Test
Problems
(1)
Inequality on the number of local extrema and saddles
Source: Korean Summer Program Practice Test 2016 4
8/17/2016
Two integers
0
<
k
<
n
0 < k < n
0
<
k
<
n
and distinct real numbers
a
1
,
a
2
,
…
,
a
n
a_1, a_2, \dots ,a_n
a
1
,
a
2
,
…
,
a
n
are given. Define the sets as the following, where all indices are modulo
n
n
n
. \begin{align*} A &= \{ 1 \le i \le n : a_i > a_{i-k}, a_{i-1}, a_{i+1}, a_{i+k} \text{ or } a_i < a_{i-k}, a_{i-1}, a_{i+1}, a_{i+k} \} \\ B &= \{ 1 \le i \le n : a_i > a_{i-k}, a_{i+k} \text{ and } a_i < a_{i-1}, a_{i+1} \} \\ C &= \{ 1 \le i \le n ; a_i > a_{i-1}, a_{i+1} \text{ and } a_i < a_{i-k}, a_{i+k} \} \end{align*} Prove that
∣
A
∣
≥
∣
B
∣
+
∣
C
∣
\lvert A \rvert \ge \lvert B \rvert + \lvert C \rvert
∣
A
∣
≥
∣
B
∣
+
∣
C
∣
.
combinatorics