A real number sequence a1,⋯,a2021 satisfies the below conditions.
a1=1,a2=2,an+2=an+an+12an+12(1≤n≤2019)
Let the minimum of a1,⋯,a2021 be m, and the maximum of a1,⋯,a2021 be M.
Let a 2021 degree polynomial P(x):=(x−a1)(x−a2)⋯(x−a2021)
∣P(x)∣ is maximum in [m,M] when x=α. Show that 1<α<2. Sequenceinequalitiesalgebrapolynomial