MathDB
Problems
Contests
National and Regional Contests
Korea Contests
Korea National Olympiad
2016 Korea National Olympiad
8
8
Part of
2016 Korea National Olympiad
Problems
(1)
Set differences
Source: 2016 KMO Senior #8
11/12/2016
A subset
S
∈
{
0
,
1
,
2
,
⋯
,
2000
}
S \in \{0, 1, 2, \cdots , 2000\}
S
∈
{
0
,
1
,
2
,
⋯
,
2000
}
satisfies
∣
S
∣
=
401
|S|=401
∣
S
∣
=
401
. Prove that there exists a positive integer
n
n
n
such that there are at least
70
70
70
positive integers
x
x
x
such that
x
,
x
+
n
∈
S
x, x+n \in S
x
,
x
+
n
∈
S
combinatorics
Probabilistic Method