MathDB
Problems
Contests
National and Regional Contests
Korea Contests
Korea National Olympiad
2016 Korea National Olympiad
5
5
Part of
2016 Korea National Olympiad
Problems
(1)
Perpendicularity in the Incircle Chord Lemma
Source: 2016 KMO Senior #5
11/12/2016
A non-isosceles triangle
△
A
B
C
\triangle ABC
△
A
BC
has incenter
I
I
I
and the incircle hits
B
C
,
C
A
,
A
B
BC, CA, AB
BC
,
C
A
,
A
B
at
D
,
E
,
F
D, E, F
D
,
E
,
F
. Let
E
F
EF
EF
hit the circumcircle of
C
E
I
CEI
CE
I
at
P
≠
E
P \not= E
P
=
E
. Prove that
△
A
B
C
=
2
△
A
B
P
\triangle ABC = 2 \triangle ABP
△
A
BC
=
2△
A
BP
.
geometry
incenter
circumcircle