MathDB
Problems
Contests
National and Regional Contests
Korea Contests
Korea National Olympiad
2008 Korean National Olympiad
5
5
Part of
2008 Korean National Olympiad
Problems
(1)
2008 KMO P5
Source:
8/9/2015
Let
p
p
p
be a prime where
p
≥
5
p \ge 5
p
≥
5
. Prove that
∃
n
\exists n
∃
n
such that
1
+
(
∑
i
=
2
n
1
i
2
)
(
∏
i
=
2
n
i
2
)
≡
0
(
m
o
d
p
)
1+ (\sum_{i=2}^n \frac{1}{i^2})(\prod_{i=2}^n i^2) \equiv 0 \pmod p
1
+
(
∑
i
=
2
n
i
2
1
)
(
∏
i
=
2
n
i
2
)
≡
0
(
mod
p
)
modular arithmetic
number theory