MathDB
Problems
Contests
National and Regional Contests
Korea Contests
Korea Junior Mathematics Olympiad
2014 Korea Junior Math Olympiad
4
4
Part of
2014 Korea Junior Math Olympiad
Problems
(1)
gcd(a,b,c) = 1 , exists a so that gcd(p,q+ar) = 1
Source: KJMO 2014 p4
5/2/2019
Positive integers
p
,
q
,
r
p, q, r
p
,
q
,
r
satisfy
g
c
d
(
a
,
b
,
c
)
=
1
gcd(a,b,c) = 1
g
c
d
(
a
,
b
,
c
)
=
1
. Prove that there exists an integer
a
a
a
such that
g
c
d
(
p
,
q
+
a
r
)
=
1
gcd(p,q+ar) = 1
g
c
d
(
p
,
q
+
a
r
)
=
1
.
number theory
greatest common divisor
positive integers