In an acute triangle △ABC,∠A>∠B. Let the midpoint of AB be D, and let the foot of the perpendicular from A to BC be E, and B from CA be F. Let the circumcenter of △DEF be O. A point J on segment BE satisfies ∠ODC=∠EAJ. Prove that AJ∩DC lies on the circumcircle of △BDE. geometrycircumcircleacuteCircumcenterperpendicularmidpoint