MathDB
Problems
Contests
National and Regional Contests
Korea Contests
Korea Junior Mathematics Olympiad
2012 Korea Junior Math Olympiad
2012 Korea Junior Math Olympiad
Part of
Korea Junior Mathematics Olympiad
Subcontests
(8)
7
1
Hide problems
max of \frac{(\sqrt{s_1x_1} +...+\sqrt{s_5x_5})^2}{a_1x_1+...+a_5x_5}
If all
x
k
x_k
x
k
(
k
=
1
,
2
,
3
,
4
,
5
)
k = 1, 2, 3, 4, 5)
k
=
1
,
2
,
3
,
4
,
5
)
are positive reals, and
{
a
1
,
a
2
,
a
3
,
a
4
,
a
5
}
=
{
1
,
2
,
3
,
4
,
5
}
\{a_1,a_2, a_3, a_4, a_5\} = \{1, 2,3 , 4, 5\}
{
a
1
,
a
2
,
a
3
,
a
4
,
a
5
}
=
{
1
,
2
,
3
,
4
,
5
}
, find the maximum of
(
s
1
x
1
+
s
2
x
2
+
s
3
x
3
+
s
4
x
4
+
s
5
x
5
)
2
a
1
x
1
+
a
2
x
2
+
a
3
x
3
+
a
4
x
4
+
a
5
x
5
\frac{(\sqrt{s_1x_1} +\sqrt{s_2x_2}+\sqrt{s_3x_3}+\sqrt{s_4x_4}+\sqrt{s_5x_5})^2}{a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 + a_5x_5}
a
1
x
1
+
a
2
x
2
+
a
3
x
3
+
a
4
x
4
+
a
5
x
5
(
s
1
x
1
+
s
2
x
2
+
s
3
x
3
+
s
4
x
4
+
s
5
x
5
)
2
(
s
k
=
a
1
+
a
2
+
.
.
.
+
a
k
s_k = a_1 + a_2 +... + a_k
s
k
=
a
1
+
a
2
+
...
+
a
k
)
6
1
Hide problems
number theory with sequence, related to prime p=2k+3
p
>
3
p > 3
p
>
3
is a prime number such that
p
∣
2
p
−
1
−
1
p|2^{p-1} - 1
p
∣
2
p
−
1
−
1
and
p
∤
2
x
−
1
p \nmid 2^x - 1
p
∤
2
x
−
1
for
x
=
1
,
2
,
.
.
.
,
p
−
2
x = 1, 2,...,p-2
x
=
1
,
2
,
...
,
p
−
2
. Let
p
=
2
k
+
3
p = 2k + 3
p
=
2
k
+
3
. Now we define sequence
{
a
n
}
\{a_n\}
{
a
n
}
as
a
i
=
a
i
+
k
=
2
i
(
1
≤
i
≤
k
)
,
a
j
+
2
k
=
a
j
a
j
+
k
(
j
≤
1
)
a_i = a_{i+k} = 2^i \,\, (1 \le i \le k ), \,\,\,\, a_{j+2k} = a_ja_{j+k} \,\, (j \le 1)
a
i
=
a
i
+
k
=
2
i
(
1
≤
i
≤
k
)
,
a
j
+
2
k
=
a
j
a
j
+
k
(
j
≤
1
)
Prove that there exist
2
k
2k
2
k
consecutive terms of sequence
a
x
+
1
,
a
x
+
2
,
.
.
.
,
a
x
+
2
k
a_{x+1},a_{x+2},..., a_{x+2k}
a
x
+
1
,
a
x
+
2
,
...
,
a
x
+
2
k
such that
a
x
+
i
≢
a
x
+
j
a_{x+i } \not\equiv a_{x+j}
a
x
+
i
≡
a
x
+
j
(mod
p
p
p
) for all
1
≤
i
<
j
≤
2
k
1 \le i < j \le 2k
1
≤
i
<
j
≤
2
k
.
8
1
Hide problems
n students picking n cards with numbers 1-n, probanility to have same no
Let there be
n
n
n
students, numbered
1
1
1
through
n
n
n
. Let there be
n
n
n
cards with numbers
1
1
1
through
n
n
n
written on them. Each student picks a card from the stack, and two students are called a pair if they pick each other's number. Let the probability that there are no pairs be
p
n
p_n
p
n
. Prove that
p
n
−
p
n
−
1
=
0
p_n - p_{n-1}=0
p
n
−
p
n
−
1
=
0
if
n
n
n
is odd, and prove that
p
n
−
p
n
−
1
=
1
(
−
2
)
k
k
1
−
k
p_n - p_{n-1}= \frac{1}{(-2)^kk^{1-k}}
p
n
−
p
n
−
1
=
(
−
2
)
k
k
1
−
k
1
if
n
=
2
k
n = 2k
n
=
2
k
.
4
1
Hide problems
n students shaking hands
There are
n
n
n
students
A
1
,
A
2
,
.
.
.
,
A
n
A_1,A_2,...,A_n
A
1
,
A
2
,
...
,
A
n
and some of them shaked hands with each other. (
A
i
A_i
A
i
and
A
−
j
A-j
A
−
j
can shake hands more than one time.) Let the student
A
i
A_i
A
i
shaked hands
d
i
d_i
d
i
times. Suppose
d
1
+
d
2
+
.
.
.
+
d
n
>
0
d_1 + d_2 +... + d_n > 0
d
1
+
d
2
+
...
+
d
n
>
0
. Prove that there exist
1
≤
i
<
j
≤
n
1 \le i < j \le n
1
≤
i
<
j
≤
n
satisfying the following conditions: (a) Two students
A
i
A_i
A
i
and
A
j
A_j
A
j
shaked hands each other. (b)
(
d
1
+
d
2
+
.
.
.
+
d
n
)
2
n
2
≤
d
i
d
j
\frac{(d_1 + d_2 +... + d_n)^2}{n^2}\le d_id_j
n
2
(
d
1
+
d
2
+
...
+
d
n
)
2
≤
d
i
d
j
5
1
Hide problems
AL = AD iff <KCE = <ALE , starting with a cyclic ABCD
Let
A
B
C
D
ABCD
A
BC
D
be a cyclic quadrilateral inscirbed in a circle
O
O
O
(
A
B
>
A
D
AB> AD
A
B
>
A
D
), and let
E
E
E
be a point on segment
A
B
AB
A
B
such that
A
E
=
A
D
AE = AD
A
E
=
A
D
. Let
A
C
∩
D
E
=
F
AC \cap DE = F
A
C
∩
D
E
=
F
, and
D
E
∩
O
=
K
(
≠
D
)
DE \cap O = K(\ne D)
D
E
∩
O
=
K
(
=
D
)
. The tangent to the circle passing through
C
,
F
,
E
C,F,E
C
,
F
,
E
at
E
E
E
hits
A
K
AK
A
K
at
L
L
L
. Prove that
A
L
=
A
D
AL = AD
A
L
=
A
D
if and only if
∠
K
C
E
=
∠
A
L
E
\angle KCE = \angle ALE
∠
K
CE
=
∠
A
L
E
.
2
1
Hide problems
concyclic, starting with an inscribed pentagon
A pentagon
A
B
C
D
E
ABCDE
A
BC
D
E
is inscribed in a circle
O
O
O
, and satisfies
∠
A
=
9
0
o
,
A
B
=
C
D
\angle A = 90^o, AB = CD
∠
A
=
9
0
o
,
A
B
=
C
D
. Let
F
F
F
be a point on segment
A
E
AE
A
E
. Let
B
F
BF
BF
hit
O
O
O
again at
J
(
≠
B
)
J(\ne B)
J
(
=
B
)
,
C
E
∩
D
J
=
K
CE \cap DJ = K
CE
∩
D
J
=
K
,
B
D
∩
F
K
=
L
BD\cap FK = L
B
D
∩
F
K
=
L
. Prove that
B
,
L
,
E
,
F
B,L,E,F
B
,
L
,
E
,
F
are cyclic.
3
1
Hide problems
Find l,m,n that satisfy the equation
Find all
l
,
m
,
n
∈
N
l,m,n \in\mathbb{N}
l
,
m
,
n
∈
N
that satisfies the equation
5
l
4
3
m
+
1
=
n
3
5^l43^m+1=n^3
5
l
4
3
m
+
1
=
n
3
1
1
Hide problems
An easy symmetric inequality
Prove the following inequality where positive reals
a
a
a
,
b
b
b
,
c
c
c
satisfies
a
b
+
b
c
+
c
a
=
1
ab+bc+ca=1
ab
+
b
c
+
c
a
=
1
.
a
+
b
a
b
(
1
−
a
b
)
+
b
+
c
b
c
(
1
−
b
c
)
+
c
+
a
c
a
(
1
−
c
a
)
≤
2
a
b
c
\frac{a+b}{\sqrt{ab(1-ab)}} + \frac{b+c}{\sqrt{bc(1-bc)}} + \frac{c+a}{\sqrt{ca(1-ca)}} \le \frac{\sqrt{2}}{abc}
ab
(
1
−
ab
)
a
+
b
+
b
c
(
1
−
b
c
)
b
+
c
+
c
a
(
1
−
c
a
)
c
+
a
≤
ab
c
2