MathDB
Problems
Contests
National and Regional Contests
Korea Contests
Korea Junior Mathematics Olympiad
2010 Korea Junior Math Olympiad
5
5
Part of
2010 Korea Junior Math Olympiad
Problems
(1)
sin^2 x + sin^2 y + sin^2 z < 1 if tan x + tan y + tan z = 2
Source: KJMO 2010 p5
5/2/2019
If reals
x
,
y
,
z
x, y, z
x
,
y
,
z
satises
t
a
n
x
+
t
a
n
y
+
t
a
n
z
=
2
tan x + tan y + tan z = 2
t
an
x
+
t
an
y
+
t
an
z
=
2
and
0
<
x
,
y
,
z
<
π
2
.
0 < x, y,z < \frac{\pi}{2}.
0
<
x
,
y
,
z
<
2
π
.
Prove that
s
i
n
2
x
+
s
i
n
2
y
+
s
i
n
2
z
<
1.
sin^2 x + sin^2 y + sin^2 z < 1.
s
i
n
2
x
+
s
i
n
2
y
+
s
i
n
2
z
<
1.
trigonometry
Trigonometric inequality
algebra
inequalities