MathDB
Problems
Contests
National and Regional Contests
Kazakhstan Contests
Kazakhstan National Olympiad
2003 Kazakhstan National Olympiad
2
2
Part of
2003 Kazakhstan National Olympiad
Problems
(1)
sum x ^ 3/ (x + y) >= (xy + yz + zx)/2
Source: 2003 Kazakhstan MO grade XI P2
11/3/2020
For positive real numbers
x
,
y
,
z
x, y, z
x
,
y
,
z
, prove the inequality: \displaylines {\frac {x ^ 3} {x + y} + \frac {y ^ 3} {y + z} + \frac {z ^ 3} {z + x} \geq \frac {xy + yz + zx} {2}.}
algebra
inequalities