MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2012 Today's Calculation Of Integral
821
821
Part of
2012 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 821
Source: 1996 Yamaguchi University entrance exam/Science
6/13/2012
Prove that :
ln
11
27
<
∫
1
4
3
4
1
ln
(
1
−
x
)
d
x
<
ln
7
15
.
\ln \frac{11}{27}<\int_{\frac 14}^{\frac 34} \frac{1}{\ln (1-x)}\ dx<\ln \frac{7}{15}.
ln
27
11
<
∫
4
1
4
3
l
n
(
1
−
x
)
1
d
x
<
ln
15
7
.
calculus
integration
logarithms
inequalities
calculus computations