MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2011 Today's Calculation Of Integral
716
716
Part of
2011 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 716
Source: 2010 Miyazaki University entrance exam/Medicine
6/25/2011
Prove that :
∫
1
e
(
ln
x
)
n
d
x
=
(
−
1
)
n
−
1
n
!
+
e
∑
m
=
0
n
(
−
1
)
n
−
m
n
!
m
!
(
1
2
)
m
\int_1^{\sqrt{e}} (\ln x)^n\ dx=(-1)^{n-1}n!+\sqrt{e}\sum_{m=0}^{n} (-1)^{n-m}\frac{n!}{m!}\left(\frac 12\right)^{m}
∫
1
e
(
ln
x
)
n
d
x
=
(
−
1
)
n
−
1
n
!
+
e
m
=
0
∑
n
(
−
1
)
n
−
m
m
!
n
!
(
2
1
)
m
calculus
integration
logarithms
calculus computations